Distributed Batch Gaussian Process Optimization

Erik A. Daxberger ! Bryan Kian Hsiang Low ?

Abstract function with a limited budget of (often costly) function
evaluations, consequently witnessing its use in an increas-
ing diversity of application domains such as robotics, en-
vironmental sensing/monitoring, automatic machine learn-
ing, among othersBrochu et al. 201Q Shabhriari et al.
2016. A number of acquisition functions (e.g., probabil-
ity of improvement orexpected improvemef(il) over the

- e ; currently found maximumBrochu et al. 2010, entropy-
GP-UCB can jointly optlmlze a batch of inputs based Yillemonteix et al, 2009 Hennig & Schuler2012

(as opposgzd to Sglectlpg the mputs of a t.’"?‘tCh Hermandez-Lobato et al.2014, and upper conbdence
one ata tlme) while stil preseving scalab|I|'Fy bound (UCB) (Srinivas et al. 2010) have been devised
in the batch size. To realize .th's’ we generalize to perform BO: They repeatedly select an input for eval-
GP-UCB to a new _batch \{anant amenable to a uating/querying the black-box function (i.e., until the bud-
Markov approximation, W.h'Ch can.th(_en be natu- get is depleted) that intuitively trades off between sampling
rally formu'IaFed asa muIU-agent distributed con- where the maximum is likely to be given the current, pos-
stra_unt optlmlz_at|0n prqblem in order to fully ex- sibly imprecise belief of the function modeled byGaus-
ploit th? e_ﬂ:cm_zncy Of Its fstate-of-the-ar_t solvers sian procesgGP) (i.e., exploitation) vs. improving the GP
for achieving linear time in the batch size. Our belief of the function over the entire input domain (i.e., ex-

DB'.G.F."UCB algorithm offers practmoners. the ploration) to guarantee bnding the global maximum.
Rexibility to trade off between the approxima-

tion quality and time efbciency by varying the The rapidly growing affordability and availability of hard-

This paper presents a novdistributed batch
Gaussian process upper conbdence bound
(DB-GP-UCB) algorithm for performing batch
Bayesian optimizatioBO) of highly complex,
costly-to-evaluate black-box objective functions.
In contrast to existing batch BO algorithms, DB-

Markov order. We provide a theoretical guar- ware resources (e.g., computer clusters, sensor networks,
antee for the convergence rate of DB-GP-UCB robot teams/swarms) have motivated the recent develop-
via bounds on its cumulative regret. Empiri- ment of BO algorithms that can repeatedly selebi#ch

cal evaluation on synthetic benchmark objective of inputs for querying the black-box function arallel in-
functions and a real-world optimization problem stead. Such batch/parallel BO algorithms can be classibed
shows that DB-GP-UCB outperforms the state- into two types: On one extreme, batch BO algorithms like
of-the-art batch BO algorithms. multi-points El (¢-El) (Chevalier & Ginsbourger2013,

parallel predictive entropy searqPPES) Ehah & Ghahra-
manij, 2015, and theparallel knowledge gradient method
1. Introduction (¢-KG) (Wu & Frazier, 2016 jointly optimize the batch of
inputs and hence scale poorly in the batch size. On the
Bayesian optimizatiofBO) has recently gained consider- other extreme, greedy batch BO algorithmgimi et al.,
able traction due to its capability of Pnding the global max-201Q Contal et al, 2013 Desautels et 312014 Gonzlez
imum of a highly complex (e.g., non-convex, no closed-et al, 2016 boost the scalability by selecting the inputs of
form expression nor derivative), noisy black-box objectivethe batch one at a time. We argue that such a highly sub-
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To achieve this, we brst observe that, interestingly, batcliRegret. Supposing our goal is to get close to the global
BO can be perceived as a cooperative multi-agent decisiomaximum f(x*) as rapidly as possible whene* |
making problem whereby each agent optimizes a separatrg maxp f(X), this can be achieved by minimizing a
input of the batch while coordinating with the other agentsstandard batch BO objective such as Hach or full cu-
doing likewise. To the best of our knowledge, this has notmulative regre{Contal et al.2013 Desautels et §12014:
been considered in the BO literature. In particular, if batchThe notion of regret intuitively refers to a loss in reward
BO can be framed as some known class of multi-agent defrom not knowingx* beforehand. Formally, the instanta-
cision making problems, then it can be solved efbcientlyneous regret incurred by selecting a single inptb eval-
and scalably by the latterOs state-of-the-art solvers. The kesate its corresponding is dePned as, ! f(x*) $ f(x).
technical challenge would therefore be to investigate howAssuming a Pxed cost of evaluating for every possi-
batch BO can be cast as one of such to exploit its advarble batchD, of the same size, the batch and full cumu-
tage of scalability in the number of agents (hence, batchative regrets are, respectively, debned as sums (over it-
size) while at the same time theoretically guaranteeing therationt = 1,...,7T) of the smallest instantaneous re-
resulting BO performance. gret incprred by any input within every batdb, i.e.,

To tackle the above challenge, this paper presents a novél™ t=1 MiNxo 7, and of the instantaneous re-

distributed batch BO algorithm (Sectid) that, in con- preTts l!ncurred by all inputs of every bateh, i.e., i} !

trast to greedy batch BO algorithmazimi et al, 201Q =1 x'p, 'x- The convergence rate of a batch BO al-
Contal et al, 2013 Desautels et §12014 Gonzlez etal, ~ 90rithm can then be assessed based on some upper bound
2016, can jointly optimize a batch of inputs and, unlike ON the average regrér /T or &Y /T (Section3) since the

the batch BO algorithmsQhevalier & Ginsbourge2013 currently found maximum after |terat|ops is no further
Shah & GhahramanR015 Wu & Frazier 2016, still pre- ~ away from f(x”) than Ry /T or R% /T. Itis desirable for
serve scalability in the batch size. To realize this, we generd batch BO algorithm to asymptotically achiave regret

alize GP-UCB Brinivas et al.2010 to a new batch variant -€-lMtes Rr/T =0 orlimrys R} /T =0, implying
amenable to a Markov approximation, which can then pdhat it will eventually converge to the global maximum.

naturally formulated as a multi-agedistributed constraint  Gaussian Processes (GPs)o guarantee no regret (Sec-
optimization problen{DCOP) in order to fully exploit the  tjon 3), the unknown objective functioyi is modeled as a
efbciency of its state-of-the-art solvers for achieving linearsagmple of a GP. Ldtf(x)}x-p denote a GP, that is, every
time in the batch size. Our proposdiﬂ;tribu.tc_ad batch GP-  pnite subset of f(x)}xp follows a multivariate Gaus-
UCB (DB-GP-UCB) algorithm offers practitioners the Bex- sjan distribution Rasmussen & Williams2006. Then,
|p|I|ty to trade off betwgen the approximation quallty.and the GP is fully specibed by itsrior meanmy ! E[f(X)]
time efbciency by varying the Markov order. We provide agngd covariancé,y: ! covf(x), f(x9] for all x,x® % D,

theoretical guarantee for the convergence rate of our DByyhich, for notational simplicity (and w.l.0.g.), are assumed
GP-UCB algorithm via bounds on its cumulative regret.iq pe zero, i.e.my = 0, and bounded, i.ek,y: & 1, re-

We empirically evaluate the cumulative regret incurred bygpectively Given a column vectoyp,,, ! ().
our DB-GP-UCB algorithm and its scalability in the batch noisy observed outputs for some @t ;| ! Dit‘-l
size on synthetic benchmark objective functions and areal- . 1 of inputs aftert $ 1 iterations 2 GP hodel can

world optimization problem (Sectiod). perform probabilistic regression by providing a predictive
distributionp(fp, |Yp,.,) = N(p,,! b,p,) of the latent
2. Problem Statement, Background, and outputsfp, ! (f(x))yp , for any setD; ( D of inputs
Notations selected in iteratiort with the following posterior mean

_ ) o vector and covariance matrix:
Consider the problem of sequentially optimizing an un-

known objective functionf : D ! R whereD " RY  up ! Kp,p, (Kb spriat o2D) Yo,y

denotes a domain af-dimensional input feature vectors. ! p p, ! Kp,p,$Kp,p,.,4(Kpy 4Dyt 021) *Kp, D,
We consider the domain to be discrete as it is known how (1)
to generalize results to a continuous, compact domain VigshereKgg: ! (kxx')x's x''s ' forallB,B*" D .
suitable discretizationsSfinivas et al.2010. In each it- ) ) )

erationt = 1,...,T, a batchD; " D of inputs is se- GP-UCB and its Greedy Batch Variants.Inspired by the

lected for evaluating/querying to yield a corresponding YUCB algorithm for the multi-armed bandit problem, the
column vectoyp, | (yx)k-p . Of noisy observed outputs GP-UCB algorithm $rinivas et al.2010 selects, in each
' iteration, an inputx % D for evaluating/queryingf that

trades off between sampling close to an expected maximum
(i.e., with large posterior mean 43 ) given the current GP
belief of f (i.e., exploitation) vs. that of high predictive un-

yx ! f(X)+ ewithi.i.d. Gaussian noise# N (0, c2) and
noise variance?2.
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certainty (i.e., with large posterior variance,y x;) toim-  the agents have been assigned to optimize. Complete and
prove the GP belief of overD (i.e., exploration), that is, approximation algorithms exist for solving a DCOP; see
maxcp fixy + B ) o oy Where the parametgk >0 (Chapman et gl.201% Leite et al, 2014 for reviews of

is set to trade off between exploitation vs. exploration forsuch algorithms.

bounding its cumulative regret.

Existing generalizations of GP-UCB such &P batch 3. Distributed Batch GP-UCB (DB-GP-UCB)

UCB (GP-BUCB) Pesautels et 312014 andGP-UCB straightforward generalization of GP-UCBSifnivas

with pure explorationGP-UCB-PE) Contal et al, 2013 . o . ; )
are greedy batch BO algorithms that select the inputs of thgt al, 2019 to jointly optimize a batch of inputs is to sim

. . : . _ ply consider summing the GP-UCB acquisition function
batch one at a time (Sectid). Specibcally, to avoid se over all inputs of the batch. This, however, results in se-

lecting the same input multiple times within a batch (henceIecting the same inpuD; | times within a batch, hence re-

reducing to GP-UCB), they update the posterior variance; . . .
(but not the posterior mean) after adding each input toducmg t_o_GP UCB, as explained earlier in Se(_:tl’orTo re-
the batch, which can be performed prior to evaluating itSsolve this issue but not suffer from the suboptimal behavior

correspondingf since the posterior variance is indepen- of greedy batch BO algorithms such as GP-BUCR<au-
dent of the observed output$)( They differ in that GP- tels et al, 2014 and GP-UCB-PEGontal et al. 2013, we

. . . ropose a batch variant of GP-UCB that jointly optimizes a
BUCB greedily adds each input to the batch using GP-UCBEatEh of inputs in each iteratiare 1 :JF acc{)rc?ing to
(without updating the posterior mean) while GP-UCB-PE T
selects the prst input using GP-UCB and each remaining
input of the batch by maximizing only the posterior vari-
ance (i.e., pure exploratior_1$imilarly, a recently proposed \yhere the parameter > 0, which performs a similar role
UCB-DPP-SAMPLE algorithmKathuria et al. 2016 se- {4 that of 5, in GP-UCB, is set to trade off between ex-
lects the Prstinput using GP-UCB and the remaining input$|oitation vs. exploration for bounding its cumulative re-
by sampling from adeterminantal point procestDPP).  gyet (Theorent) and the conditional mutual informatibn
Like GP-BUCB, GP-UCB-PEand UCB-DPP-SAMPLE I[fo;Yb, YD, ] can be interpreted as the information gain
we can theoretically guarantee the convergence rate of 0y, ¢ overD (j.e., equivalent tdp ! (X))o ) by se-
DB-GP-UCB algorithm, which, from a theoretical point |acting the batchD; of inputs for evaluating/querying
of view, §|gn|bes an advantage of GP—UCB—bgseq batc'@iven the noisy observed outpus,,, from the previ-
BO algorithms over those (e.g-El and PPES) inspired oys; ¢ 1 iterations. So, in each iteratian our proposed
by other acquisition functions such as El and PES. Unlikeyaich GP-UCB algorithm2) selects a batch; "D of in-
these greedy batch BO algorithn@dntal et al. 2013 De- ;s for evaluating/querying that trades off between sam-
sautels et a]2014), our DB-GP-UCB algorithm can jointly  pling close to expected maxima (i.e., with a large sum of
optimize the batch of inputs while still preserving scalabil- posterior meand! up, = 1x}) given the cur-

t X t

ity in batch size by casting as a DCOP to be described nextant Gp belief off (i.e., exploitation) vs. that yielding

Distributed Constraint Optimization Problem (DCOP). @ large information gain[fo;yp,lyp...] on f over D

A DCOP can be debned as a tugihé,V,A,h,W) that 1O improve its GP belief (i.e., exploration). It can be de-
comprises a seX of input random vectors, a sat of  rivedthati[fo;yo, lyp,.,] = 0.5l0g]/+ 0, 2! b,p, | (Ap-
IX| corresponding bnite domains (i.e., a separate domaiR€ndixA), which implies that the exploration term i&)(
for each random vector), a sét of agents, a function ¢an be maximized by spreading the balzhof inputs far
h:X A assigning each input random vector to an agen@part to achieve largposterior variance individually and
responsible for optimizing it, and a $&t ! {wn}n=1 .. N small magnitude oposteriorcovariance between theta

of non-negative payoff functions such that each functionencourage diversity

wn debnes a constraint over only a subsgt( X ofin-  ynfortunately, our proposed batch variant of GP-UGH (

put random vectors and represents the joint payoff that thg,o|ves evaluating prohibitively many batches of inputs
corresponding agens, ! {A(x)[x % X,} (A achieve. (e exponential in the batch size), hence scaling poorly in
Solving a DCOP involves bnding the input valuesofhat  the batch size. However, we will show in this section that
maximize the sum of all functionsy,; ... ,wn (i.€., social  gur patch variant of GP-UCB is, interestingly, amenable to
welfare maximization), that isnaxx  ;-; wn(Xa). T 3 Markov approximation, which can then be naturally for-

achieve a truly decentralized solution, each agent can only, jated as a multi-agent DCOP in order to fully exploit the
optimize its local input random vector(s) based on the as-

signment functior, but communicate with its neighbor- ~*In contrast to the BO algorithm dfontal et al(2019 that
ing agents: Two agents are considered neighbors if ther@SC Uses mutual information, our work here considetshBO

is a function/constraint involving input random vectors thatby exploiting the correlation information between inputs of a
ginp batch in our acquisition function ir2) to encourage diversity.

maxp, 0 1' po, + of *llfo;yp Yo 2 (2)
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efbciency of its state-of-the-art solvers for achieving Iinear“iD[Dt such that each diagonal blo€k,, of its Cholesky
time in the batch size. factor (and hence eadog|(U,, Unn) | term) will de-
pend on only a subset of the batch. The following result

Markov Approximation. The key idea is to design the presents one such possibility:

structure of a matriX' p,p, whose log-determinant can .
closely approximate that ¢fp,p, ! I+ 0,2 p,p, re- Proposition2. LetB % {1,...,N$ 1} be given. If 5,
siding in thel[fp;yp, lyp,.,.] term in @) and at the same is B-block-banded, then

time be decomposed into a sum of log-determinant terms, o o

each of which is dePned by submatrices of, p, that all (U Unn) "= "D 0w $ " b, 08 " bE DB " DE D,
depend on only a subset of the batch. Such a decomposition

enables our resulting approximation &j (o be formulated  for n 4= 1,...,N where ! min(n + B,N),
as a DCOP (Sectiop). D& ! ncnst Dt pups ! [ owby dnt=nen s

At brst glance, our proposed idea may be naively imple- P& P& !
mented by constructing aparseblock-diagonal matrix " p, ps .
" b,p, Using, say, theéV > 1 diagonal blocks of p,p, - _ _
Then,log|™ p,p,| can be decomposed into a sum of log- Its proof follows directly fr.om a block-banded matrlg result
determinants of its diagonal blockseach of which de- ©f (Asif & Moura, 21003 (i.e., Theorent). Proposition2
pends on only a disjoint subset of the batch. This, howeveindicates that if' , , is B-block-banded (Figlb), then
entails an issue similar to that discussed at the beginning cﬁachlog|(Ur!mUnn ) 1| term depends on only the subset
this section of selecting the sarf;|/N inputs N times Dy 'D § = !n!:n Dy of the batchD; (Fig. 1c).

within a batch due_to the as_,sumption of ingependence Of)ur next result debnes a structure™s, o, in terms of
outputs bef(w_een d|fferen_t d|_agonal blocks OE"D" 0 the blockswithin the B-block band of" DD, toinduce a
address this issue, we S|gn|DcantIy relax this assumpt'o%-block-banded inverse &fp p. -

and show that it is in fact possible to construct a more N o
rePneddensematrix approximatior’ p,p, by exploiting ~ Proposition 3. Let

[" DDy ]n’,n”=n+l ..... r, and” D& D !

a Markov assumption, which consequently correlates the $ . it 14| & B
outputs between all its constituent blocks and is, perhaps %’" Din Din I ) ’
surprisingly, still amenable to the decomposition to achieve' by, b, ! 0% 0F D DEDE DDy if# <$B,
scalability in the batch size. " bnpe " Dtgn 0, D8 D, IT# > B;
Specibcally, evenly partition the bat@ of inputs into . . _ (4)
N % {1,...,|D|} disjoint subsetsDis,...,Dw and ﬂh?re# I n$n*forn,n*=1,..., N (seeFigla). Then,
"b,0, (" b,D,)INt0oN) N square blocks, i.e”, p,p, ! " b.p, IS B-block-banded (see Figb).

["bwDyidnnt=t,..n ("bDioe ! ["DwDy dnnt=1,.n )

Our brst result below derives a decomposition of the log-tS Proof follows directly from a block-banded matrix result
determinant of any symmetric positive depnite block ma-Of (Asif & Moura, 2009 (i.e., TheorenB). It can be ob-

. a 1 .
trix " p,p, into a sum of log-determinant terms, each served from4) and Fig.1 that (a) thoughl ;, p,, is a sparse
of which is debned by a separate diagonal block of theB-block-banded matrix; p,p, is a dense matrix approx-

Cholesky factor OFDlD . imation forB = 1,...,N$ 1; (b) whenB = N §$ 1

o orN =1,"pp, =" p,p,; and (c) the blockswithin
Proposition 1. Consider the Qholesky factorization of the B-block band of" p,p, (i.e., |n $ nY & B) coin-
a symmetric positive deanit'EDtlD1 I U'U where cide with that of" p,p, while each blockoutsidethe B-

Cholesky facto/ ! [Unn'Jan'=1..n (€., partiioned block band of o, (i.e.,[n$ n > B) is fully speci-

into N') N square blocks) is an upper triangular block Ped by the blocks within th&-block band of' pp, (i.e.,

matrix (i.e.,Una: = 0 forn > nY. Then,log|" b,p,| = In$ nY & B) due to its recursive series pis nY$ B
N log [(U%, Unn ) 4. reduced-rank approximations (Fin). Note, however, that
n=t m thelog (UL, Un)" 1| terms @) forn = 1,..., N depend

. . . . on only the blocks within (and not outside) ti&block
Its proof (AppendixB) utilizes properties of the determi pand of' o, o, (Fig. 1c).

nant and that the determinant of an upper triangular block
matrix is a product of determinants of its diagonal blocksRemarkl. Proposition3 provides an attractive principled
(e, |U| = E:l |Unn |). Propositionl reveals a subtle interpretation: Let, ! o, *(yx $ g xy) denote a scaled
possibility of imposing some structure on theerseof ———M
- 3A block matrixP ! [Ppnt]nn t=1...n  (i.€., partitioned into

2The determinant of a block-diagonal matrix is a product of N x N square blocks) i -block-banded if any blocR,, ' out-
determinants of its diagonal blocks. side itsB -block band (i.e.Jn — n'| > B ) is 0.
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Dy Do Dy Dua | Dy D | Dis._.. Da | Du Dz | Dis .. D
i n>i . i n> ] I [ Tntins
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Di2f! Di2Dys .| Di2Di | ! ! thi 0 thé 0 Uz 0
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Dt4 TDIAthiptﬁlDl D ¢aD¢3 \IIDMDM Dia 0 0 Di4 0 0 0 Usg
nt ptSTTTTTTTTTTT Nt a1 nt RS IR AL RIS T A T 1
e 1 _ a1
(@" b.p, ()" b.p, (c) U = cholesky” p,p,)

Figure 1.Up,p,, ¥p tlDt ,andU with B = 1 andN = 4. (a) Shaded blocks (i.dn —n'| < B) form theB -block band while unshaded
blocks (i.e.,Jn — n'| > B ) fall outside the band. Each arrow denotes a recursive call. (b) Unshaded blocks outddbltek band
of @D}DI (i.e.,|n —n'| > B ) are0, which result in the (c) unshaded blocks of its Cholesky fattdseing0 (i.e.,n —n' > 0 or

n' —n>B ). Using B) and @), U1, Uz, Uss, andU,4 depend on only the shaded blocksaf, o, enclosed in red, green, blue, and

purple, respectively.

residual incurred by the GP predictive meéh (ts covari-
ance is then cdyy, ex] =" (xy x'3- In the same spirit as
a Gaussian Markov random process, imposing-th or-
der Markov property on the residual procdss}x o , iS
equivalent to approximatinyp,p, with™ p,p, (4) whose
inverse isB-block-banded. In other words,|i$ n8 > B,
then{ex}xp ,, and{ex}xp , . are conditionally indepen-
dent given{ex}x'p \ (b, )p ,,1)- This conditional inde-

Proposition 4 implies that the approximated infor-
mation gain f{fp;yp,|Yyp..,] iS never smaller than
the exact information gainl[fp;yp,lyp,,,] Since

Dk (" p,p.s" b)) * 0with equality whenN = 1, in

which cas€ p,p, =" b,p, (4). Thus, intuitively, our pro-
posed Markov approximatidmallucinates informatiotinto
" p,p, to yield anoptimistic estimatef the information

gain (by selecting a particular batch), ultimately making

pendence assumption therefore becomes more relaxed withur resulting algorithnoverconbdenin selecting a batch.
a larger batchD;. Proposition2 demonstrates the impor- This overconbdence is information-theoretically quantibed

tance of such @-th order Markov assumption (or, equiva- by theapproximation errorD. (" p,p,," b,0,) & 1.

lently, the sparsity oB-bIock-bandec'TDtlD‘ ) to achieving
scalability in the batch size.

Remark?2. Regarding the approximation quality 0%, p,
(4), the following result (see Appendi&€ for its proof)
shows that theKullback-Leibler (KL) distance of" p,p,
from" p,p, Measures an intuitive notion of trEproxi-

Remark3. The KL distanceDx, (" p,p,," p,p,) Of" b,D,
from" p,p, is also the least among 4ib.|) |D | matrices
with a B-block-banded inverse, as proven in Appenbix

DCOP Formulation. By exploiting the approximated in-
formation gainf{fp ;yp, |yp,,,] (Propositiond), Proposi-
tion 1, (3), and @), our batch variant of GP-UCB2J can

mation errorof " p,p, being the difference in information e reformulated in an approximate sehtea distributed
gain when relying on our Markov approximation, which po..p GP-UCB(DB-GP-UCB) algorithrfi that jointly op-

can be bounded by some quantity
Proposition 4. Let the KL distance Dy (" ,'() !

0.5r(" (" 1) $ log|" (" 1| $ |D|) between two sym-

metric positive debnit¢D;| ) |D | matrices" and (
measure the error of approximatirlg with (. Also, let
fifo;yp,lYp,..,] ! 0.5log|" p,p,| denote the approxi-
mated information gain, and’ * 1[f;,;;Yp,|YD,....] for
all x % Dandt %N. Then, for allt %N,

Dk (" byp,»" DiD;)
= T.-[fD;yDl |yD1:1»1]$ I[fD;yD( |yDl:t-1]
& (exp(ZC) $ 1) I[fD;yDt |yD1:t-1] g

timizes a batch of inputs in each iteratior= 1,...,7T
according to

N
argmax  wn(Dyn 'D &)
Di(d o
wn (D 'D &) ! 1' pp, +(0.5aclog|" o, b, o8 N2
)

DE‘ Din *

D, !

n ' 1 "

Din Dln$ (D DIE; DB DB

tn tn

W|th " D(n Dtn |DlEr’\ I "
T !
“Note that our acquisition functiob( uses N (log |-
instead o _, log|-[)*? to enable the decomposition.
Pseudocode for DB-GP-UCB is provided in Appentix

)1/2



Distributed Batch Gaussian Process Optimization

Note that b) is equivalent to our batch variant of GP-UCB Its proof (AppendixF), when compared to that of GP-UCB
(2) when N = 1. It can also be observed thdh)(is (Srinivas et al.2010 and its greedy batch variant€g¢n-
naturally formulated as a multi-agent DCOP (Sect)n tal et al, 2013 Desautels et 312014, requires tackling
whereby every agent, % A is responsible for optimiz- the additional technical challenges associated with jointly

ing a disjoint subsddy, of the batchD; forn=1,... /N optimizing a batciD; of inputs in each iteration. Note
and each functiono, qunes a constraint over only the that the uncertainty sampling based initialization strategy
subsetDy, 'D & = L!:n Dy,: of the batchD; and  proposed bypesautels et a(2014 can be employed to re-

represents the joint payoff that the corresponding agentplace the exp(2C) term (i.e., growing linearly ifDy|)

Ap! {an!}:]!: » (A achieve. As aresultbf can be efb-  appearing in our regret bounds by a kernel-dependent con-
ciently and scalably solved by the state-of-the-art DCOP alstant factor ofC® that isindependenbf |D.|; values ofC*®
gorithms Chapman et a1201% Leite et al, 2014. Forex-  for the most commonly-used kernels are replicated in Ta-
ample, the time complexity of an iterative message-passingle 2 in AppendixG (see sectior.5 in (Desautels et al.

algorithm called max-suntarinelli et al, 2008 scales ex- 2014 for a more detailed discussion on this issue).

B . e ! Table 1 in Appendix G compares the bounds oRr of
=( B+
= imited tme budget, a practiioner san set & masimunD:CP-UCB 6). GP-UCB-PE, GP-BUCB, GP-UCRNG
arity of w for an ?un,ctioﬁw after which the number 2Co DPP-SAMPLE Compared to the bounds of
y or any fun n GP-UCB-PE and UCB-DPP-SAMPLE, our bound includes
N of functions is adjusted ta{B + 1) |D¢|/w, so that o S
. ) the additional kernel-dependent factor@t which is sim-
the time incurred by max-sum to solve the DCOP %) ( . .
. g 6 : o . . ilar to GP-BUCB. In fact, our regret bound is of the same
is O(|D| w®B|D¢|)° per iteration (i.e., linear in the batch ]
. . form as that of GP-BUCB except that our bound incor-
size|D¢| by assumingv and the Markov ordeB to be con- L
: : porates a parametéy of our Markov approximation and
stants). In contrast, our batch variant of GP-U@Bificurs . o
an upper bounasr on the cumulative approximation error,

exponential time in the batch Sifi3.|. The max-sumalgo- "¢\ hich vanish for our batch variant of GP-UCB(
rithm is also amenable to a distributed implementation on a

cluster of parallel machines to boost scalability further. If aCorollary 1. For our batch variant, of GP-UCE{Z),+H12e
solution quality guarantee is desired, then a variant of maxeumulative regrets reduce tBr & 2 T|Dt| 2aryr

sum call_ed bounded max-suiRdgers et aJ.20_1]) canbe andR$ & 2 (Tar )2,

used. Finally, the Markov orde3 can be varied to trade

off between the approximation quality 6fp,p, (4) and  Corollary1 follows directly from Theorenl and by noting
the time efPciency of max-sum in solving the DCOP3p ( that for our batch variant?), N = 1 (since" p,p, then

. . trivially reduces td' andy, =0 fort=1,...,T.
Regret Bounds. Our main result to follow derives proba- y D:0.) "

bilistic bounds on the cumulative regret of DB-GP-UCB: Finally, the convergence rate of our DB-GP-UCB algo-
Theorem 1. Let § % (0,1) be given, C; ! rithm i_s QOminated by the growth behavior ¢f + o

4/log(1 + 0,2), yr | maxp,. o [fo:Yp.nl ot ! While itis well-known that Fhe bounds on the maximum
C1D1 | exp(20) Iog(|D|t27r2/(65)), and g | Tl tT—l " mutual informatioryr established for the commonly-used

: . linear, squared exponential, and Mat kernels in$rinivas
Then, for the batch and full cumulative regrets incurred by . . . :
our DB-GP-UCB algorithn(s), etal, 2010 Kathuria et al.2016 (i.e., replicated in Tablg

. in AppendixG) only grow sublinearly ifl’, it is notimme-

Rr &2 T|D7| 2ar N(yr + WT)+1/2 and diately .clea_r how the upper bounst on the cumulative
approximation error behaves. Our next result reveals that

g in fact only grows sublinearly ifi” as well:

hold with probability of at leasL $ . Corollary 2. &r & (exp(2C) $ 1)vr.

R &2(TarN(yr +or)"?

®We assume the use of online sparse GP modetaig & Corollary 2 follows directly from the dePbnitions af; in

Opper 2002 Hensman et g|.2013 Hoang et al. 2015 2017 prgposition4 and@r and~r in Theoreml and applying
Low et al, 2014h Xu et al, 2014 that can update the GP predic- the chain rule for mutual information. Sincg grows

tive/posterior distributionk) in constant time in each iteration. . . - .
"Bounded max-sum is previously used Rogers et al 2017 sublinearly inT' for the above-mentioned kernelSr{ni-

to solve a related maximum entropy sampling probl&ingivry & ~ Vas et al,. 2010 andC' can be chosen to be independent of
Wynn, 1987 formulated as a DCOP. But, the largest arity of any 7" (e.g.,C ! V5 r 1) (Desautels et g12014), it follows
functionwy, in this DCOP is still the batch siZé@: | and, unlike from C0r0||ary2 that gr grows Sub|inear|y in". As are-
the focus of our work here, no attempt is madeRogers etal. gt Theoreni guarantees sublinear cumulative regrets for

2011 to reduce it, thus causing max-sum and bounded max-su b ti d k | hich imolies that DB
to incur exponential time ifD; |. In fact, our proposed Markov € above-mentioned kernels, which implies that our Db-

approximation can be applied to this problem to reduce the largeseP-UCB algorithm §) asymptotically achieves no regret,
arity of any functionw, in this DCOP to agairiB + 1)|D;|/N . regardless of the degree of our proposed Markov approxi-
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mation (i.e., conbguration ¢V, B]). Thus, our batch vari- when a function evaluation is economically costly, one may

ant of GP-UCB 2) achieves no regret as well. be willing to instead invest more time (hence larggrto
evaluatef for a smaller batch (e.g|Pt| = 2) of inputs
4. Experiments and Discussion in each iteratiort in return for a higher frequency of in-

formation and consequently a more adaptive BO to achieve
This section evaluates the cumulative regret incurred byotentially better performance. In some settings, both fac-
our DB-GP-UCB algorithm §) and its scalability in the tors may be equally important, that is, moderate values of
batch size empirically on two synthetic benchmark ob-|Dt|andT are desired. To the best of our knowledge, such
jective functions such as Branin-Hobifotte, 2008 and a form of empirical analysis does not seem to be available
gSobol Gonzlez et al, 2016 (Table 3 in Appendix H) in the batch BO literature.
and a real-world pH Peld of BroomQOs Barn fawester
& Oliver, 2007 (Fig. 3in AppendixH) spatially distributed

over a1200m by 680 m region discretized into 31) 18 dbatch sizelDr | (.., 2,4.8.16) vs. time horizonT (re-

grid of sampling locations. These objective functions an §pectively,32 16,8, 4) using a bxed budget Gf|D+ | = 64

the real-world pH beld are each modeled as a sample Yunction evaluations for the Branin-Hoo function (left col-
a GP whose prior covariance is debned by the widely-

used squared exponential keriigl: | o2 exp($ 0.5(x $ umn), gSobol function (middle column), and real-world pH

, : peld (right column). Our DB-GP-UCB algorithm uses the
! 2 | 2
.X% $ 2(x $ x9) Whe@ | dla}g[él, -+ la] andog are conbgurations ofN, B] = [4, 2],[8, 5], [16, 10] in the ex-
its length-scale and signal variance hyperparameters, re riments with batch sizfdr| = 4.8, 16, respectively:
spectively. These hyperparameters together with the noise Th= == P y:

variances? are learned using maximum likelihood estima- In the case ofDr| = 2, we use our batch variant of GP-
n i i I - - =
tion (Rasmussen & Williams2008. UCB (2) which is equivalent to DB-GP-UCB wheN = 1.

It can be observed that DB-GP-UCB achieves lower cumu-
The performance of our DB-GP-UCB algorithmd) (is  lative regret than GP-BUCB, GP-UCB-PE, SM-UCihd
compared with the state-of-the-art batch BO algorithmsBBO-LP in all experimentgwith the only exception being
such as GP-BUCB[esautels et al2014, GP-UCB-PE the gSobol function for the smallest batch siz¢f | = 2
(Contal et al. 2013, SM-UCB (Azimi et al,, 2010, ¢-El where BBO-LP performs slightly bettegince DB-GP-
(Chevalier & Ginsbourger2013, and BBO-LP by plug- UCB can jointly optimize a batch of inputs while GP-
ging in GP-UCB (Gonzlez et al. 2016, whose imple- BUCB, GP-UCB-PE, SM-UCBand BBO-LPare greedy
mentation8 are publicly available. These batch BO algo- batch algorithms that select the inputs of a batch one at
rithms are evaluated using a performance metric that medime. Note that as the real-world pH Peld is not as well-
sures the cumulative regret incurred by a tested algorithmbehaved as the synthetic benchmark functions (see3Fig.
' th1 f(x*)$ f(k:) wherek; ! argmaxc,-o fyx,; (1) in AppendixH), the estimate of the Lipschitz constant by
is the recommendation of the tested algorithm afteatch  BBO-LP is potentially worse, hence likely degrading its
evaluations. For each experimebtoisy observations are performance. Furthermore, DB-GP-UCB can scale to a
randomly selected and used for initialization. This is in- much larger batch size d6 than the other batch BO algo-
dependently repeatdst times and we report the resulting rithms that also jointly optimize the batch of inputs, which
mean cumulative regret incurred by a tested algorithm. Allincludeq-El, PPES $hah & Ghahraman2015 andg-KG
experiments are run on a Linux system with IhteXeon" (Wu & Frazier, 2016: Results ofy-El are not available for
E5-2670at 2.6GHz with 96 GB memory. IDt| * 4 as they require a prohibitively huge computa-
tional effort to be obtain€d while PPES can only operate
with a small batch size of up ®for the Branin-Hoo func-
"tion and up to4 for other functions, as reported isljah

Fig. 2 shows resultsof the cumulative regret incurred by
the tested algorithms to analyze their trade-off between

For our experiments, we uselxedbudget of T'|Dt| =
64 function evaluations and analyze the trade-off betwee

Specively.32 16,5, 4 on the performance of the tosted & CMEAMaNI 2015, and ¢-KG can only operate wit
P Y95 15,6, b a small batch size of for all tested functions (including

algorlthms: This expenme_ntal setup _repr.esents a praCtIt'he Branin-Hoo function and four others), as reported in
cal scenario of costly function evaluations: On one hand

. L : . “[Wu & Frazier 2016. The scalability of DB-GP-UCB is
when a function evaluation is computationally costly (i.e., ., . L
. . L . attributed to our proposed Markov approximation of our
time-consuming), it is more desirable to evaludtéor a

larger batch (e.g]Dt| = 16) of inputs in parallel in each °Error bars are omitted in Fig to preserve the readability of
iterationt (i.e., if hardware resources permit) to reduce thethe graphs. Areplication of the graphs in F2dncluding standard
total time needed (hence smallg). On the other hand, ©Tor bars s provided in Appendi.
In the experiments dbonzlez et al(2016, g-El can reach a
8Details on the used implementations are given in Tdhle  batch size of up ta0 but performs much worse than GP-BUCB,
Appendix|. We implemented DB-GP-UCB in MATLAB to ex- Wwhich is likely due to a considerable downsampling of possible
ploit the GPML toolbox Rasmussen & Williams2006). batches available for selection in each iteration.
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Figure 2.Cumulative regret incurred by tested algorithms with
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varying batch sizefDr | = 2, 4, 8, 16 (rows from top to bottom)

using a bxed budget df|Dr | = 64 function evaluations for the
Branin-Hoo function, gSobol function, and real-world pH Peld.

batch variant of GP-UCBZ2) (Section3), which can then
be naturally formulated as a multi-agent DC@pit order
to fully exploit the efpciency of one of its state-of-the-art et al, 2012 Ouyang et a.2014. For applications with
solvers called max-suntérinelli et al, 2009. In the ex-
periments with the largest batch sizdBf | = 16, we have
reduced the number of iterations in max-sum to less $1an models Chen et al.20133 Hoang et al.2016 Low et al,

without waiting for convergence to preserve the efbciency2015 to represent the belief of the unknown objective func-
of DB-GP-UCB, thus sacriPcing its BO performance. Nev-tion efbciently.

ertheless, DB-GP-UCB can still outperform the other tested

batch BO algorithms.

We have also investigated and analyzed the trade-off be-
tween approximation quality and time efbciency of our DP-
GP-UCB algorithm and reported the results in Appentix
due to lack of space. To summarize, it can be observed
from our results that the approximation quality improves
near-linearly with an increasing Markov ordBrat the ex-
pense of higher computational cost (i.e., exponenti@)n

5. Conclusion

This paper develops a novelistributed batch GP-UCB
(DB-GP-UCB) algorithm for performing batch BO of
highly complex, costly-to-evaluate, noisy black-box objec-
tive functions. In contrast to greedy batch BO algorithms
(Azimi et al,, 201Q Contal et al. 2013 Desautels et al.
2014 Gonzlez et al. 2016, our DB-GP-UCB algorithm
can jointly optimize a batch of inputs and, unlikeheva-
lier & Ginsbourgey 2013 Shah & GhahramanpR015 Wu

& Frazier, 2016, still preserve scalability in the batch size.
To realize this, we generalize GP-UCBr{nivas et al.
2010 to a new batch variant amenable to a Markov ap-
proximation, which can then be naturally formulated as a
multi-agent DCOP in order to fully exploit the efbciency
of its state-of-the-art solvers such as max-suraripelli

et al, 2008 Rogers et a).2011) for achieving linear time

in the batch size. Our proposed DB-GP-UCB algorithm
offers practitioners the Rexibility to trade off between the
approximation quality and time efpciency by varying the
Markov order. We provide a theoretical guarantee for the
convergence rate of our DB-GP-UCB algorithm via bounds
on its cumulative regret. Empirical evaluation on synthetic
benchmark objective functions and a real-world pH Peld
shows that our DB-GP-UCB algorithm can achieve lower
cumulative regret than the greedy batch BO algorithms
such as GP-BUCB, GP-UCB-PE, SM-UC&hd BBO-LR
and scale to larger batch sizes than the other batch BO
algorithms that also jointly optimize the batch of inputs,
which include¢-El, PPES,and ¢-KG. For future work,
we plan to generalize DB-GP-UCB (a) to the honmyopic
context by appealing to existing literature on honmyopic
BO (Ling et al, 2016 and active learning&ao et al.2013
Hoang et al.20143ab; Low et al, 2008 2009 2011, 20143

as well as (b) to be performed by a multi-robot team to
Pnd hotspots in environmental sensing/monitoring by seek-
ing inspiration from existing literature on multi-robot ac-
tive sensing/learningdhen et al.2012 2013h 2015 Low

a huge budget of function evaluations, we like to couple
DB-GP-UCB with the use of parallel/distributed sparse GP
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A. Derivation of I[fp;Yp,|Yb,.,] TErMin (2)

By the debpnition of conditional mutual information,

fo ;YD YD sl

= H[yDtlyDj_:t-l]! H[yDtlfD 1yD1:t-1]

= Hlyp,lyp,.,]! Hlyo,Ifo.]

0.5|D¢|log(2! €) +0.5log|" 2l + ! p,p,|! 0.5|D¢|log(2! €)! 0.5log|"2!|
=0.5log(" 31 + ! oo "5 )

=0.5log(" 31 + ! oo I1"s %11

=0.5log|l + "} 2 p.p,|

where the third equality is due to the debnition of Gaussian entropy, thétlys, |yp,,.,] ! 0.5D¢|log(2! e) +
0.5log|" 21 +! p,p,|andH[yp, [fp,]! 0.5|D¢|log(2! €)+0.5log|" 21|, the latter of which follows fron# =y, ! f (x) "
N (0,"7) for all x # D; and hence(yp, |fp,) = N(0,"51).

B. Proof of Proposition 1

log|” b, |
—1
F'logl|" p,p,|

=1 log|U" U|
=1 log|U" ||U|
=1 log|U|?

IN
=12log  |Un]

n=1

"N

=12 log |Unn |
n=1
"N

=1 log|Unm |?

n=1
nN

=1 log|Upp [[Unn |

n=1
N

=1 log|Up, Unn |

n=1
uN

= log |Urlwln Unn |! !

n=1
nN

= |Og|(Url1'n Unn)! 1|

n=1

where the brst, third, fourth, eighth, ninth, and last equalities follow from the properties of the determinant, the second

—

equality is due to the Cholesky factorization"o@tlDI , and the pfth equality follows from the property that the determinant
of an upper triangular block matrix is a product of determinants of its diagonal block$Uie=, ?zl [Unn -
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C. Proof of Proposition 4

From the debnition 0Dy, (" p,p,," b,D,).

D ("gpipes ™ DID‘)l L %
=0.5 tr( DD DD.) " |<3/g|" DD p.o. ! Dt

—0.5&! log|" 0,0," p,p,| -
=0.51 log|" p,p,|*+10g " b,D,|
=0.5log|" p,p,|! 05log|" b, |
= T[fD;yDn |yDl:t—1] ! I[fD;ny |yD1:1—1] :

The second equality is due tc('trDtDtT:DtlD‘) = tr(" p,p, :DtlD‘) = tr(l) = |D¢|, which follows from the observations

that the blocks within th@& -block bands of p,p, and” p,p, coincide and‘i![,tlDt is B -block-banded (Propositio8). It
follows that o

DkL(" bp» " DiDY)

= flfo; Yo, ypua]! Hfo: Yo YDyl

D¢l $ %
— ..| |
=0.5log|" p,p, ! 05log 1+"1 2 E b
( b=1 )
| g . Dl $ y %
nl nl |
$ 0.5log 14702 pgexy ! 05log 1+ "% F )
x#D b=1
Dl & SN $ L
- nl 2 nl 2 1
= 05|Og 1+ n [ {XpH Xb} | 05|Og 1+ N {xpH xb}
b=1 b=1
D] $ 0p D¢l $ %
nl 2 bl 1 u' 2y b1
$ b 0.5log 1+ " 2exp(2C)! b W ! . 0.5log 1+"1°1 Fviw
=1 =
D] $ % D¢l $ %
n| 27 b1 ll| 2y b1
$ exp(2C) 05log 1+ I O xo) ! 0.5log 1+ ! (o x5}
b=1 b=1
D¢l $ %

=(exp(2C)! 1) 05log 1+" 2121

{xpH Xxn}
b=1
= (eXp(2 C) ! 1) I[fD.yDt |yD1 t 1] .

The second and last equalities are due to LerrimeAppendixF and! bx ! Xs is dePned in DePnitiofh in AppendixF.
The brst inequality is due to HadamardOs inequality and the observation that the blocks withiridble bands of D.D;
and" p,p, (and thus their diagonal elements) coincide. The second inequality is due to L2immapendixF. The third
inequality is due to BernoulliOs inequality.

Remark The Prst inequality can also be interpreted as bounding the approximated information gain for an drbitsary

by the approximated information gain for the,,p, with the highest possible degree of our proposed Markov approxi-
mation, i.e., foN = |D{| andB = 0. In this case, all inputs of the batch are assumed to have conditionally independent
corresponding outputs such that the determinant of the approximated matrix reguces i@ the product of its diagonal ele-
ments which are equal to the diagonal elements of the original matrix. Thysy, | $ x#p, 1t+" h 2l e x3 which
interestingly coincides with HadamardOs inequality. Note that we only coBsRdet for our proposed algorithm (Propo-

sition 2) since the case @ = 0 entails an issue similar to that discussed at the beginning of S&&téselecting the

same inputD¢| times within a batch.

D. Minimal KL Distance of Approximated Matrix
For the approximation quality 6fp, p, (4), the following result shows that th€ullback-Leibler(KL) distance of" p,p,
from" p,p, isthe least among alD;| & |D:| matrices with &8 -block-banded inverse:

Proposition 5. Let KL distanceDg, (" ,™) ! 0.5¢tr(" *' 1)1 log|" *' 1| ! |D;|) between twdD;| & |D;| symmet-
ric positive debnite matrices and* measure the error of approximatiry with * Then,Dk (" b,p,»" D.D,) $
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Dk (" b,p,,") for any matrix* with aB -block-banded inverse.

Proof.

DKL("$DtD“TDtDt)+ Dk.(" o, ™) % $ %

. —11 . 11 — , — .
=0.5$tr( 00" p,0.)! 109" ;0" DD, I! Dt +0(-)'}'-> tr(" o0, ' 1)1 log[ o0, " ! Dy
0)
=0.5 tr("p,p,"' ) ! log|" p,o,|! log|*' Y ! Dy
$ ] 1 %
=05 tl’(" DtDt.*. l)! |Og|" DID[*' 1|! |Dt|
=D (" o) -

The second equality is due td'trDtDtT:DtlDt) = tr(TD[DtT:DtlDt) = tr(I) = |D¢|, which follows from the observa-
tions that the blocks within thB-block bands of' p,p, and” p,p, coincide and'i,;llD‘ is B -block-banded (Proposi-

tion 3). The third equality follows from the Prst observation above and the debnitiof} thats B -block-banded. Since
D ("pipes ™) %0, Dk (“ b,0s " Di0:) $ D (Y bipys ). O

E. Pseudocode for DB-GP-UCB

Algorithm 1 DB-GP-UCB
Input: Objective functionf , input domainD, batch sizeg|D¢|, time horizonT, prior meanmy and kernelkyy ',
approximation parameteB andN
fort=1,...,T do + /
- . * Lo+ $illfoiyolyp,,,] (2 fB=N! 1,
Select acquisition functioa(Dy) ! 0\ . / _
! n=1 1 Hp, + 05%¢log|" p p,pel (5 otherwise

Select batctD; ! arg maxy, g p a(Dt)

Query batctD; to obtainyg, ! (f (x)+ 1;9')'(#51
end for
Output: Recommendatiok ! argmax,p Hix}

F. Proof of Theorem 1

We brst debne a different notion of posterior variance:
DePnition 1 (Updated Posterior VarianceletD; ! {X1,...,Xp,|} be the batch selected in iteratidn Assume an

arbitrary ordering of the inputs iD;. Then, for0$ b! 1< |Dy],! ?'X bl}{ %o} is debPned as the updated posterior variance

at inputxy that is obtained by applyinffl) conditioned on the previous inputs in the ba[(zh' Y1 {xX1,...,Xp 1}. Note
that performing this update is possible without query[m@ ! since! ? 1 is independent of the outpw%:y- 1. For

b1 {xbH xv}
bt 1=0,! 7 5 «,; reducestd (y,y x,}-

The following lemmas are necessary for proving our main resuylt here:
Lemma 1. Let%# (0,1) be given and ! 2log(|D|! /% where °, 1! *=1 and!, > 0. Then,
$ %

0
Pro'x#D "t#N[f()! Hoyl$ &' (5, %1 %

Lemmababove corresponds to Lemrbal in (Srinivas et al.2010); see its proof therein. For examplg,= t?! 2/6> 0
satisbes .o, !+ 1=1.

Lemma 2. For f sampled from a known GP prior with known noise variahgethe ratio of! ;y, ,; 0! ?'X bl}{ xp} fOr

all x, # D¢ is bounded by

Xl xo} $ %
| b! t;l. : = eXp 2 I[f{xb}’yD:) 1|yD1:t»l] $ eXp(ZC)

{xpX xb}
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b 1

(X0} xo} and Dtb! 1 are previously debned in Debnitidnand for allx # D andt # N,

where!

C %l [f{x} ;yD:’" 1 |yD1:1-1]
is a suitable constant.

Lemma2 above is a combination of Propositidrand equatior® in (Desautels et al2014); see their proofs therein. The
only difference is that we equivalently bound the ratio of variances instead of the ratio of standard deviations, thus leading
to an additional factor o2 in the argument oéxp.

Remark.Since the upper bourekp(2C) will appear in our regret bounds, we need to chadsiitably. A straightforward
choiceC ! ' Dt 1= maxXa g D,JAl &[D¢|! 1 |[fD ;yA] % maXa s D,JAl &|D¢]! 1 |[fD ya |YD1;[.1] % I[fD ;yDtb" llyDlzt-l] %
i xy Yoy 1|Yp,.,] (see equationdl, 12, and13 in (Desautels et gl2014) is unfortunately unsatisfying from the
perspective of asymptotic scaling since it grows at leagt(ésy |D¢|), thus implying thakxp(2C) grows at least linearly
in |D¢| and yielding a regret bound that is also at least linedgbi). The work ofDesautels et a{2014) shows that when
initializing an algorithm suitably, one can obtain a cons@rindependentf the batch siz¢D;|. Refer to Sectiort in
(Desautels et 312014 for a more detailed discussion.

Lemma 3. For all t # N andxy # Dy,

%

$
bl 1 n!l 2y b1
D xol oy $ 05Colog 1470 G Ay

whereCo ! 2/ log(1+ "} ?).

Lemma3 above corresponds to an intermediate step of Lefdhan (Srinivas et al.2010); see its proof therein.

Lemma 4. The information gain for a batcB; chosen in any iteratiohcan be expressed in terms of the updated posterior
variances of the individual inputs, # D¢, b# {1,...,|D|} of the batctD;. That is, for allt # N,

D¢l $ %
nl !
I[fD;nylyDl:t-l]:o'S |Og 1+ n2' ?Xbl}{ Xb}

b=1

Lemma4 above corresponds to Lemrba in (Srinivas et al.2010 (the only difference being that we equivalently sum
overl,...,|D¢|instead ofl, ..., T); see its proof therein.

Lemma 5. Let%# (0,1) be given,Co ! 2/ log(L + "} 2), and$; ! Co|D¢|exp(2C)& where& andexp(2C) are
previously debned in Lemmasnd?2, respectively. Then,

( . )

1
Pr 'Di( D"'t#N FO)! Ml $ $c1lfoiyo,Yos..) %1! %
X#D¢

Proof. For allD; ( D andt # N,

& ! (xyx)
X#Dy

IDt]
= & P ol xo}

b=1
D]

bl 1
$ & exp(2C) ! Ok o)
b=1

|D!| $ %
$ 0.5Coexp(2C)& log 1+" 2121

" {xbX xb}
b=1
Co e|Xp(2C)&I Ifo;yolyDyial
|Dt|. 1$t I[fD;yDtlyDlzt-l]
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where the brst inequality is due to Lemrgathe second inequality is due to Lemr@aand the second equality is due to
Lemma4. Thus,
" 2 "

1
&' {sz}{ « & IDt &' yyxy $ St llfoiyo bl
x#Dy X#D¢

where the prst inequality is due to the Cauchy-Schwarz inequality. It follows that

( . 1 )
Pr 'D¢( D'"t#N fF)! Myl $ $e o Yo YDyl
( X#D¢ )
%Pr 'Di( D't#N If(x)! pxy| $ &' f’xz}{x}
$ X#D¢ x#D0p
%Pr ' x#D "t#N[F()! Hgl$ & LY
%l! %

where the Prst two inequalities are due to the property that for logical proposkiansiB,[A =) B] =) [Pr(A) $
Pr(B)], and the last inequality is due to Lemrha O

Lemma6. Let(; %tfo;yp,lYp..,]' Hfo;Yp, YD, ]bean upper bound on the approximation errof af, p, . Then,
forallt # N,

"N/

1
0.5l0g]" b, o,y pg |$  N([foiyp lypra]+ (1) -

n=1

Proof.

uN /

0.5log|" p,, b, & |

0.5l0g|" p,, by DB |

= / Nf‘[fD;YDt |yD1:t-1]

= 1 N(I[fD;yDtlyDl:t»l]-'- T-[fD;yDtlyDl:t-l]! I[fD;yDtlyDl:l-l])
$ N([fo;yp lypral+ (v)

where the brst inequality is due to the Cauchy-Schwarz inequality. O

Lemma 7. Lett # N be given. If

1
IF ) Mgl S S lfo; Yo, Yorial ®6)

X#Dy

0 /
fc/)r all Dy ( D, then 4D, T $ 2 $¢N(lffo;y5, IYpra]+ (1) and min, 5 ry $

2 |5’[|! 2$t N(I[fDiyﬁt |yD1:x—1]+ (t)
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Proof.

= 7(f(X')! f(x))

X% D¢ "
= () f (x)
8#51 x#Dy 8
n / "
$7  w+ S N(foiys lyoral+ (09! f(X)
x#D, 6 x#Dy 8 (7)
/ " "
= $N(fo;yg5, IYoralt () + 7 Hixy ! f(x)9
/ "X#ch x#D;
= $:N(fo;y5, IYoradt () + Hixy b (X)
/ ¥#Dy

$ /$t N([fo:ys, [Yora ]+ ()+  $cN(fo;yg, Yol + (1)
=2 $t N(II:fD’yﬁt |yD1:t-1]+ (t) .

The brst equality in%) is by depPnition (Sectio). The brst inequality in7) is due to

f(x")
x# DY
= f(x)
x#D{ /
$ Hixy + St llfosyo#lypy. ]
x#Df /
$ Moy + $cTlfoiYor Yoyl
x#D}
! N
" (8)
= Hixy t+ $, 0.5log| D D{ ID{B |
x#D} n=1
n * nN /
$ Hixy + St 0.5l09]" p¢ p# pze |
x#D} n=1
" * "N/
$ Hixy + St 0.5log|" D D D2, |
%#Dy / _n=l
$ Hixy + $t N(I[fD;yﬁtlmeq]—'_ (t)
x#Dy

where, in ), the brst inequality is due t®), the second inequality is due to Propositibsee the paragraph after this
proposition in particular), the third inequality is due to the simple observation tlﬁb_g a, % ,’:'zl an, the fourth

inequality follows from the dePnition d; in (5) and, with a slight abuse of notatioB, is dePned as a batch ;|
inputsx’ , and the last inequality is due to LemaThe last inequality in%) follows from (6) and an argument equivalent
to the one in §) (i.e., by substitutind; by Dy).

From (7), /
min ry $ — r«$ 2 [Dtf' 28 N(Ifo;y5, Yoy ]+ (1) -
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Main Proof

Rt
uT n
= Iy

t=1 X#E[

nT
2 $t N(I[fnyD |YD“1] (t)

$ 2§ T$r N

$t N(I[fD yDllyDltl] (t)

T T )
oY, Iy, .1+ (

=1 , t=1
—21 T$r N I[nyYELT]"'QT
$2 TS N(r1+467)
=  C,T|Dr|exp(2C)& N (' 1 + §7)

holds with probabilityl! %where the brst equality is by debnition (Sect®nthe brst inequality follows from Lemmés
and 7, the second inequality is due to the Cauchy-Schwarz inequality, the third inequality is due to the non-decreasing
t with increasingt, the second equality follows from the chain rule for mutual information and the debnitign bf
th1 (¢, the fourth inequality is by debnition (Theorer) and the third equality is due to the debnitior$efin Lemmab,

ID1| = ...= |Dt| and the debnition th&l, ! 4Co =8/ log(1+ "} ?).
Analogous reasoning leads to the result that

ot / /

Rt = minry $2 T|Dr|' 28t N(' 1 +87) =
t=1 X#D¢

CoTIDt|' *exp(2C)& N(' 1 + é7)

holds with probabilityl | %where the Prst equality is by depPnition (Sect®)n

G. Comparison of Regret Bounds

Table 1.Bounds orRt (7 ! 2log(|D|T2"2/(6#), C1 ! 4/ log(L+ $,%),C, ! 2Cy,Cs ! 9Ci). Note thatiDr| = 1 in %

for GP-UCBandHpep !~ [, H(DPP (K)) with H(DPP (K)) denoting the entropy of §D¢| ! 1)-DPP with kernelK (see
(Kathuria et al.2016 for details on their proposed kernels). Also, note that for DB-GP-UCB and GB-BUCB, we assume the use of the
initialization strategy proposed Wyesautels et a[2014; otherwise, the factaE " is replaced by exp(2C).

BO Algorithm , Bound orRt
DB-GP-UCB (5) cC C,TD1] & N( 1 + 67)
GP-UCB-PE Contal et al.2013 ! CiT|ID7|' 1& ' 1
GP-BUCB pesautels et 12014 cC C,T|Dt [ &, T
GP-UCB @rinivas et al.2010 CoT&' 1

UCB-DPP-SAMPLE Kathuria et al.2016

2C3T|D7|& [t ! Hppp+ |Dt|log(|D])]




Distributed Batch Gaussian Process Optimization

Table 2.Bounds on maximum mutual informati®s (Srinivas et al.201Q Kathuria et al. 2016 and values o’ (Desautels et gl.
2014 for different commonly-used kernel&( d(d+1)/(2' + d(d+1)) " 1with' being the Magrn parameter).

Kernel ‘o (of!
Linear dlog(T|Dt]) exp(2/e)
RBF (log(T|D+])° exp((2d/e)d)
Matern (T|Dt[)*log(T|Dr]) e

H. Synthetic Benchmark Objective Functions and Real-World pH Field

Table 3.Synthetic benchmark objective functions.
Name Function D

Branin-Hoo f(x)= a(xa! bx2+cxy! r)2+ s(l! t)cos(xi)+ s [! 5 15F
wherea=1,b=5.1/(4!?),c=5/!,r =6,s=10, andt = 1/(8!).

19 1ax 1 2+ &

Sobol f(x)= | 55
9 0= [ 5]
whered =2 anda; =1 fori=1,...,d.
0
Mixture of cosines f(x)=1" i2:l (g(xi) ! r(xp)) [l 1,1P

whereg(x;) = (1 .6x; ! 0.5)? andr(x;) = 0.3cos(3 (1.6x; ! 0.5)).

5 10 15 20 25 30

Figure 3.Real-world pH beld of BroomOs Barn faWdgpster & Oliver 2007).
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|. Details on the Implementations of Batch BO Algorithms

Table 4.Details on the available implementations of the batch BO algorithms for comparison with DB-GP-UCB in our experiments.

BO Algorithm  Language URL of Source Code
GP-BUCB MATLAB http://lwww.gatsby.ucl.ac.uk/ ~tdesautels/
SM-UCB MATLAB http://www.gatsby.ucl.ac.uk/ -tdesautels/
GP-UCB-PE MATLAB http://econtal.perso.math.cnrs.fr/software/

g-El R http://cran.r-project.org/web/packages/DiceOptim/
BBO-LP Python http://sheffieldml.github.io/GPyOpt/

J. Analysis of the Trade-Off between the Approximation Quality vs. Time Efpciency of
DB-GP-UCB

We now analyze the trade-off between the approximation quality vs. time efbciency of DB-GP-UCB by varying the Markov
orderB and numbeN of functions in DCOP. The mixture of cosines functidngerson et a).2000 is used as the objec-

tive functionf and modeled as a sample of a GP. A large batch|Biz¢ = 16 is used as it allows us to compare a multitude

of different conbgurations ¢N, B ] # {[16, 14],[16,12],...,[16,0],[8, 6],[8, 4],[8, 2],[8, 0], [4, 2], [4, 0], [2, OT} . The ac-
quisition function in our batch variant of GP-UCR)(is used as the performance metric to evaluate the approximation
quality of the batctDt (i.e., by pluggingD+ into (2) to compute the value of the acquisition function) produced by our
DB-GP-UCB algorithm %) for each conbguration ¢N, B ].

Fig. 4 (top) shows results of the normalized values of the acquisition functia?) imchieved by plugging in the bat@y
produced by DP-GP-UCHB] for different conbgurations ¢N, B ] such that the optimal value o2)(i.e., achieved in the
case ofN = 1) is normalized tdl. Fig. 4 (bottom) shows the corresponding time complexity of DP-GP-UCB plotted in
logp| -scale, thus displaying the values (@ + 1) DT |/N . It can be observed that the approximation quality improves
near-linearly with an increasing Markov ord@rat the expense of higher computational cost (i.e., exponenti&).in

1.02

1

0.98

0.96

0.94

Value of acg. function

0.92

N=1 [16,14][16,12][16,10] [16,8] [16,6] [16,4] [16,2] [16,0] [8,6] [8:4] [8.2] [8,0] [42] [4.0] [20]

N
o

=
)]

Time complexity
=
(2] o

N=1 [16,14][16,12][16,10] [16,8] [16,6] [16,4] [16,2] [16,0] [8,6] [8,4] [8,2] [8,0] [42] [4,0]1 [2,0]
Configuration of [N,B]

Figure 4.(Top) Mean of the normalized value of the acquisition functior2)n(¢ver64 experiments of randomly selected noisy observa-
tions of sizeb) achieved by plugging in the bat€&hr (of size16) produced by our DP-GP-UCB algorithrs)for different conbgurations

of [N, B ] (including the case dfl = 1 yielding the optimal value of2)); note that the horizontal line is set at the optimal baseline of
y = 1 for easy comparison and the y-axis starty at 0.915. (Bottom) Time complexity of DP-GP-UCB for different conbgurations

of [N, B ] plotted in logp, -scale.
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K. Replication of Regret Graphs including Error Bars
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Figure 5.Cumulative regret incurred by tested algorithms with varying batch fixes= 2, 4, 8, 16 (rows from top to bottomysing a
bxed budget oT |D+ | = 64 function evaluations for the Branin-Hoo function, gSobol function, and real-world pH Peld. The error bars
denote the standard error.



