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a b s t r a c t

In recent years a number of large-scale triple-oriented knowledge graphs have been generated and various
models have been proposed to perform learning in those graphs. Most knowledge graphs are static and
reflect the world in its current state. In reality, of course, the state of the world is changing: a healthy
person becomes diagnosed with a disease and a new president is inaugurated. In this paper, we extend
models for static knowledge graphs to temporal knowledge graphs. This enables us to store episodic
data and to generalize to new facts (inductive learning). We generalize leading learning models for
static knowledge graphs (i.e., Tucker, RESCAL, HolE, ComplEx, DistMult) to temporal knowledge graphs.
In particular, we introduce a new tensor model, ConT, with superior generalization performance. The
performances of all proposed models are analyzed on two different datasets: the Global Database of
Events, Language, and Tone (GDELT) and the database for Integrated Conflict Early Warning System
(ICEWS). We argue that temporal knowledge graph embeddings might be models also for cognitive
episodic memory (facts we remember and can recollect) and that a semantic memory (current facts we
know) can be generated from episodicmemory by amarginalization operation.We validate this episodic-
to-semantic projection hypothesis with the ICEWS dataset.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In recent years a number of sizable Knowledge Graphs (KGs)
have been developed, the largest ones containing more than 100
billion facts. Well known examples are DBpedia [1],YAGO [2],
Freebase [3], Wikidata [4] and the Google KG [5]. Practical issues
with completeness, quality and maintenance have been solved to
a degree that some of these knowledge graphs support search, text
understanding and question answering in large-scale commercial
systems [5]. In addition, statistical embedding models have been
developed that can be used to compress a knowledge graph, to
derive implicit facts, to detect errors, and to support the above
mentioned applications. A recent survey on KG models can be
found in [6].

Most knowledge graphs are static and reflect the world at
its current state. In reality, of course, the state of the world is
changing: a healthy person becomes diagnosed with a disease and
a new president is inaugurated. In this paper, we extend semantic
knowledge graph embedding models to episodic/temporal knowl-
edge graphs as an efficient way to store episodic data and to be
able to generalize to new facts (inductive learning). In particular,
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we generalize leading approaches for static knowledge graphs
(i.e., constrained Tucker, DistMult, RESCAL, HolE, ComplEx) to tem-
poral knowledge graphs.We test thesemodels using two temporal
KGs. The first one is derived from the Integrated Conflict Early
Warning System (ICEWS) data set which describes interactions
between nations over several years. The second one is derived from
the Global Database of Events, Language and Tone (GDELT) that, for
more than 30 years, monitors news media from all over the world.
In the experiments, we analyze the generalization abilities to new
facts that might be missing in the temporal KGs and also analyze
to what degree a factorized KG can serve as an explicit memory.

We propose that our technical models might be related to the
brain’s explicit memory systems, i.e., its episodic and its semantic
memory. Both are considered long-termmemories and store infor-
mation potentially over the life-time of an individual [7,7–9]. The
semantic memory stores general factual knowledge, i.e., informa-
tion we know, independent of the context where this knowledge
was acquired andwould be related to a static KG. Episodicmemory
concerns informationwe remember and includes the spatiotempo-
ral context of events [10] and would correspond to a temporal KG.

An interesting question is howepisodic and semanticmemories
are related. There is evidence that these main cognitive categories
are partially dissociated from one another in the brain, as ex-
pressed in their differential sensitivity to brain damage. However,
there is also evidence indicating that the different memory func-
tions are not mutually independent and support one another [11].
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Fig. 1. Illustrations of (left) a semantic knowledge graph and (right) an episodic knowledge graph. (Left) Every arrow represents a (subject, predicate, object) triple, with
the annotation of the arrow denoting the respective predicate. The triple (Ban Ki-moon, SecretaryOf, UN) is deleted, since the knowledge graph has been updated with the
triple (António Guterres, SecretaryOf, UN). (Right) Every arrow represents a (subject, predicate, object, timestamp) quadruple, where the arrow is both annotated with the
respective predicate and timestamp. Here the quadruple involving is not deleted, since the attached timestamp reveals that the relationship is not valid at present.

We propose that semantic memory can be derived from episodic
memory by marginalization. Hereby we also consider that many
episodes describe starting and endpoints of state changes. For
example, an individual might become sick with a disease, which
eventually is cured. Similarly, a president’s tenure eventually ends.
We study our hypothesis on the Integrated Conflict Early Warning
System (ICEWS) dataset, which contains many events with start
and end dates. Fig. 1 compares semantic and episodic knowledge
graphs. Furthermore, Fig. 2 illustrates the main ideas of building
and modeling semantic and episodic knowledge graphs.

The paper is organized as follows. Section 2 introduces knowl-
edge graphs, the mapping of a knowledge graph to an adjacency
tensor, and the statistical embedding models for knowledge
graphs. We also describe how popular embedding models for KGs
can be extended to episodic KGs. Section 3 shows experimental re-
sults onmodeling episodic KGs. Finally,we present experiments on
the possible relationships between episodic and semanticmemory
in Section 4.

2. Model descriptions

A static or semantic knowledge graph (KG) is a triple-oriented
knowledge representation. Here we consider a slight extension to
the subject–predicate–object triple form by adding the value in
the form (es, ep, eo; Value), where Value is a function of es, ep, eo
and, e.g., can be a Boolean variable (True for 1, False for 0) or a real
number. Thus (Jack, likes, Mary; True) states that Jack (the subject
or head entity) likes Mary (the object or tail entity). Note that es
and eo represent the entities for subject index s and object index o.
To simplify notation we also consider ep to be a generalized entity
associated with predicate type with index p. For the episodic KGs
we introduce et , which is a generalized entity for time t .

To model a static KG, we introduce the three-way semantic
adjacency tensorχ where the tensor element xs,p,o is the associated
Value of the triple (es, ep, eo). One can also define a companion ten-
sorΘχ with the same dimensions as χ andwith entries θs,p,o. Thus,
the probabilistic model for the semantic tensor χ is defined as
P(xs,p,o|θs,p,o) = σ (θs,p,o), where σ (x) = 1/(1+exp(−x)). Similarly,

Fig. 2. Illustration of themain idea behind themodels presented in this paper. Step
1: Knowledge is extracted from unstructured data, such as websites, newspapers
or social media. Step 2: The knowledge graph is constructed, where entities are
assigned as nodes, and predicates as labeled edges; note that there is a labeled edge
for each timestamp. Step 3: The knowledge graph is represented as a tensor; for
semantic KGs, we obtain a 3-way tensor, storing (subject, predicate, object) triples,
and for episodic KGs, we obtain a 4-way tensor, storing (subject, predicate, object,
timestamp) quadruples. Step 4: The semantic and episodic tensors are decomposed
and modeled via compositional or tensor models (see Section 2).

the four-way temporal or episodic tensor E has elements xt,s,p,o
which are the associated values of the quadruples (et , es, ep, eo),
with t = 1, . . . , T . Therefore, the probabilistic model for episodic
tensor is defined with the corresponding companion tensor ΘE as

P(xt,s,p,o|θt,s,p,o) = σ (θt,s,p,o) . (1)
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Table 1
Summary of the general notations.
General

Symbol Meaning

es Entity for subject index s
eo Entity for object index o
ep Generalized entity for predicate index p
et Generalized entity for time index t
aei Latent representation of entity ei
a(etstart ) Latent representation of starting timestamp
aei,ri ri-th element of aei
r̃ Rank/Dimensionality of aei for i ∈ {s, p, o}
r̃t Rank/Dimensionality of aet
Ne/p/t Number of entities/predicates/timestamps

Table 2
Summary of the notations for semantic and episodic knowledge graphs.
Semantic knowledge graphs Episodic knowledge graphs

Symbol Meaning Symbol Meaning

χ Sem. adjacency tensor E Epi. adjacency tensor
Θχ Companion tensor of χ ΘE Companion tensor of E
xs,p,o Value of (es , ep , eo) xt,s,p,o Value of (et , es , ep , eo)
θ sem
s,p,o Logit of (es , ep , eo) θ

epi
t,s,p,o Logit of (et , es , ep , eo)

f sem(·) Sem. indicator function f epi(·) Epi. indicator function
Gsem Sem. core tensor Gepi Epi. core tensor
g sem(·) Element of Gsem gepi(·) Element of Gepi

We assume that each entity e has a unique latent representa-
tion a. In particular, the embedding approach used for modeling
semantic and episodic knowledge graphs assumes that θ sem

s,p,o =

f sem(aes , aep , aeo ), and θ
epi
t,s,p,o = f epi(aet , aes , aep , aeo ), respectively.

Here, the indicator function f sem/epi(·) is a function to be learned.
Given a labeled dataset D = {(xi, yi)}mi=1, latent representations

and other parameters (denoted as P) are learned by minimizing
the regularized logistic loss

min
P

m∑
i=1

log(1 + exp(−yiθ
sem/epi
i )) + λ∥P∥

2
2. (2)

In general, most KGs only contain positive triples; non-existing
triples are normally used as negative examples sampled with lo-
cal closed-world assumption. Alternatively, we can minimize a
margin-based ranking loss over the dataset such as

min
P

∑
i∈D+

∑
j∈D−

max(0, γ + σ (θ sem/epi
j ) − σ (θ sem/epi

i )), (3)

where γ is the margin parameter, and D+ and D− denote the set
of positive and negative samples, respectively.

There are different ways for modeling the indicator function
f epi(·) or f sem(·). In this paper, we will only investigate multilinear
models derived from tensor decompositions and compositional
operations. We now describe the models in detail. Graphical illus-
trations of the described models are shown in Fig. 3.

Tables 1 and 2 summarize notations used throughout this pa-
per for easy reference, while Table 3 summarizes the number of
parameters required for each model.2

Tucker. First, we consider the Tuckermodel for semantic tensor
decomposition of the form θ sem

s,p,o =
∑r̃

r1,r2,r3=1 aes,r1aep,r2aeo,r3g
sem

(r1, r2, r3). Here, g sem(r1, r2, r3) ∈ R are elements of the core tensor
Gsem

∈ Rr̃×r̃×r̃ . Similarly, the indicator function of a four-way

2 For DistMult, ComplEx, and HolE it is required that r̃ = r̃t . In our experiments
(see Sections 3 and 4), in order to enable a fair comparison between the different
models, we assume that the latent representations of entities, predicates, and time
indices all have the same rank/dimensionality.

Tucker model for episodic tensor decomposition is of the form

θ
epi
t,s,p,o =

r̃t∑
r1=1

r̃∑
r2,r3,r4=1

aet ,r1aes,r2aep,r3aeo,r4g
epi(r1, r2, r3, r4), (4)

with a four dimensional core tensor Gepi
∈ Rr̃t×r̃×r̃×r̃ . Note that

this is a constraint Tucker model, since, as in RESCAL, entities
have unique representations, independent of the roles as subject
or object.

RESCAL. Another model closely related to the semantic Tucker
tensor decomposition is the RESCAL model, which has shown
excellent performance in modeling KGs [12]. In RESCAL, sub-
jects and objects have vector latent representations, while pred-
icates have matrix latent representations. The indicator function
of RESCAL for modeling semantic KGs takes the form θ sem

s,p,o =∑r̃
r1,r2=1 aes,r1gp(r1, r2)aeo,r2 , where gp(r1, r2) represents the matrix

latent representation for the predicate ep. Then next two models,
Tree and ConT, are novel generalizations of RESCAL to episodic
tensors.

Tree. From a practical perspective, training an episodic Tucker
tensor model is very expensive since the computational com-
plexity is approximately r̃4. Tensor networks provide a general
and flexible framework to design nonstandard tensor decomposi-
tions [13,14]. One of the simplest tensor networks is a tree ten-
sor decomposition (T ) of the episodic indicator function, which
is illustrated in compositional operations. We now describe the
models in detail. Graphical illustrations of the describedmodels are
shown in Fig. 3(e). Therefore, we propose a tree tensor decomposi-
tion (T ) of the episodic indicator function. The tree T is partitioned
into two subtrees T1 and T2, wherein subject es and time et reside
in T1, while object eo and an auxiliary time et reside in T2. T1 and
T2 are connected with ep through two core tensors G1 and G2. Thus,
the indicator function can be written as

θ
epi
t,s,p,o =

r̃t∑
r1,r6=1

r̃∑
r2,r3,r4,r5=1

aet ,r1aes,r2g1(r1, r2, r3)gp(r3, r4)g2(r4, r5, r6)aeo,r5aet ,r6 . (5)

Within T , we reduce the four-way core tensor in Tucker into two
three-dimensional tensors G1 and G2, so that the computational
complexity of T is approximately r̃3.

ConT. ConT is another generalization of the RESCAL model
to episodic tensors with reduced computational complexity of
approximately r̃3. The idea is that another way of reducing the
complexity is by contracting indices of the core tensor. Therefore,
we contract the G from Tucker with the time index giving a three-
way core tensor Gt for each time instance. The indicator function
takes the form

θ
epi
t,s,p,o =

r̃∑
r1,r2,r3=1

aes,r1aep,r2aeo,r3gt (r1, r2, r3). (6)

In this model, the tensor Gt resembles the relation-specific matrix
Gp fromRESCAL. Later, wewill see that ConT is a superiormodel for
modeling episodic knowledge graphs due to the representational
flexibility of its high-dimensional tensor Gt for the time index.

Even though the complexity of Tree and ConT is reduced as
compared to episodic Tucker, the three-dimensional core tensor
might cause rapid overfitting during training. Therefore, we next
propose episodic generalization of compositional models, such as
DistMult [15], HolE [16] and ComplEx [17]. For those models, the
number of parameters only increases linearly with the rank.

DistMult. DistMult [15] is a simple generalization of the CP
model, by enforcing the constraint that entities should have unique
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Fig. 3. Illustrations of (a) episodic Tucker, (b) episodic ComplEx (where • denotes contraction), (c) RESCAL, (d) ConT and (e) Tree. Each entity in the figure is represented as
a circle with two edges, since the representation for an entity e is ae,i . In addition, G represents the core tensor in Tucker, Gp represents the matrix latent representation of
predicate p in the RESCAL and Tree models, Gt represents the three-dimensional tensor latent representation of timestamp t in the ConT model.

Table 3
Number of parameters for different models and the runtime of one training epoch on the GDELT dataset.

Runtime

Model Semantic Episodic Complexity Rank 40 Rank 60 Rank 150

DistMult (Ne + Np + 1)r̃ (Ne + Np + Nt + 1)r̃ O(r̃) 35.2s 36.4s 53.7s
HolE (Ne + Np)r̃ (Ne + Np)r̃ O(r̃ log r̃) 42.8s 43.2s 59.0s
ComplEx 2(Ne + Np)r̃ 2(Ne + Np + Nt )r̃ O(r̃) 40.1s 42.4s 57.5s

Tree − Ne r̃ + Np r̃2 + (Nt + 2r̃2)r̃t O(r̃3) 133.6s 160.2s −

ConT − (Ne + Np)r̃ + Nt r̃3 O(r̃3) 95.4s 226.1s −

Tucker (Ne + Np)r̃ + r̃3 (Ne + Np)r̃ + (Nt + r̃3)r̃t O(r̃4) 144.2s 387.9s −

representations. Episodic DistMult takes the form θ
epi
t,s,p,o =

∑r̃
i=1

λiaet ,iaes,iaep,iaeo,i. Here, we require that vector latent representa-
tions of entities, predicates, and timestamps have the same rank.
DistMult is a special case of Tucker having a core tensor with only
diagonal elements λi.

HolE. Holographic embedding (HolE) [16] is a state-of-art link
prediction and knowledge graph completion method, which is
inspired by holographic models of associative memory.

HolE uses circular correlation to generate a compositional rep-
resentation from inputs es and eo. The indicator of HolE reads
θ sem
s,p,o = aep · (aes ⋆ aeo ), where ⋆ : Rd

× Rd
→ Rd denotes the

circular correlation [a ⋆ b]k =
∑d−1

i=0 aib(k+i)mod d. We define the
episodic extension of HolE as

θ
epi
t,s,p,o = aet ·

(
aep ⋆

(
aes ⋆ aeo

))
. (7)

As argued by [16], HolE employs a holographic reduced repre-
sentation [18] to store and retrieve the predicates from es and eo.
Analogously, episodic HolE should be able to retrieve the stored
timestamps from ep, es and eo. In the semantic case, ep can be
retrieved if existing triple relations are stored via circular convolu-
tion ∗, and superposition in the representation aeo =

∑
(s,p)∈So

aep∗
aes , whereSo is the set of all true triples given eo. This is based on the
fact that a⋆a ≈ δ [16]. Analogously, the stored timestamp et for an
event canbe retrieved if all existing episodic events are stored via∗,
and superposition in the representation of eo, aeo =

∑
(t,s,p)∈So

aet ∗
(aep ∗ aes ), where So is the set of all true quadruples (t, s, p, o)
given eo. However, high order circular correlation/convolution will
increase the inaccuracy of retrieval. Another motivation for our
episodic extension (7) is that a compositional operator of the form
aet · f̃ allows a projection from episodic memory to semantic
memory, to be detailed later.

ComplEx. Complex embedding (ComplEx) [17] is another state-
of-art method closely related to HolE. It can accurately describe
both symmetric and antisymmetric relations. HolE is a special
case of ComplEx with imposed conjugate symmetry on embed-
dings [19]. Thus, ComplEx has more degrees of freedom, if com-
pared to HolE. For the semantic complex embedding, the indicator
function is θ sem

s,p,o = Re
(∑r̃

i aes,iaep,i, āeo,i
)
with complex valued a

and where the bar indicates the complex conjugate. To be consis-
tent with the episodic HolE, the episodic complex embedding is

defined as3

θ
epi
t,s,p,o = Re

(
r̃∑
i

aet ,iaes,iaep,i, āeo,i

)
. (8)

3. Experiments on episodic models

We investigate the proposed tensor and compositional models
with experiments which are evaluated on two datasets:

ICEWS. The Integrated Conflict Early Warning System (ICEWS)
dataset [20] is a natural episodic dataset recording dyadic events
between different countries. An example entry could be (Turkey,
Syria, Fight, 12/25/2014). These dyadic events are aggregated into
a four-way tensor E with 258 entities, 20 relation types, and
72 timestamps, which has in total 320,118 positive (et , es, ep, eo)
quadruples.4 This dataset was first created and used in [21]. From
this ICEWS dataset, a semantic tensor is generated by extracting
consecutive events that last until the last timestamp, constituting
the current5 semantic facts of the world.

GDELT. The Global Database of Events, Language and Tone
(GDELT) [20] monitors the world’s news media in broadcast, print
and web formats from all over the world, daily since January 1,
1979.6 We use GDELT as a large episodic dataset. For our experi-
ments, GDELT data is collected from January 1, 2012 to December
31, 2012 (with a temporal granularity of 24 hrs). These events
are aggregated into an episodic tensor E with 1100 entities, 180
relation types, and 366 timestamps, which has in total 2, 563, 561
positive (et , es, ep, eo) quadruples.

We assess the quality of episodic information retrieval on both
datasets for the proposed tensor and compositional models. Since
both episodic datasets only consist of positive quadruples, we gen-
erated negative episodic instances following the protocol of cor-
rupting semantic triples given by Bordes [22]: negative instances

3 One can show that Eq. (7) is equivalent to Eq. (8) by converting it to the
frequency domain [19]. Then, θ epi

t,s,p,o ∝ ωT
et (ω̄ep ⊙ ω̄es ⊙ωeo ), whereω = F(a) ∈ Cr̃

are the discrete Fourier transforms of embeddings a, and using the fact that ω is
conjugate symmetric for real vector a.
4 Note that for an episodic event the dataset contains all the quadruples

(eti , es, ep, e0) for ti ∈ {tstart , tstart + 1, . . . , tend − 1, tend}.
5 Current always indicates the last timestamp/timestamps of the applied

episodic KGs.
6 https://www.gdeltproject.org/about.html.

https://www.gdeltproject.org/about.html
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Table 4
Filtered results of inferring missing entities and predicates of episodic quadruples
evaluated on the GDELT dataset.

Entity Predicate

Method MRR @1 @3 @10 MRR @1 @3 @10

DistMult 0.182 6.55 19.77 43.70 0.269 12.65 30.29 59.40
HolE 0.177 6.67 18.95 41.84 0.256 11.81 28.35 57.73
ComplEx 0.172 6.54 17.52 41.56 0.255 12.05 27.75 56.60
Tree 0.196 8.17 21.00 44.65 0.274 13.30 30.66 60.05
Tucker 0.204 8.93 21.85 46.35 0.275 12.69 31.35 60.70
ConT 0.233 13.85 24.65 42.96 0.263 12.83 29.27 57.30

of an episodic quadruple (es, ep, eo, et ) are drawn by corrupting
the object eo to eo′ or the timestamp et to et ′ , meaning that
(es, ep, eo′ , et ) serves as a negative evidence of the episodic event
at time instance et , and (es, ep, eo, et ′ ) is a true fact which cannot
be correctly recalled at time instance et ′ . During training, for each
positive sample in a batch we assigned two negative samples with
corrupted object or corrupted subject.

Themodel performance is evaluated using the following scores.
To retrieve the occurrence time, for each true quadruple, we re-
place the time index et with every other possible time index et ′ ,
compute the value of the indicator function θ

epi
t ′,s,p,o, and rank them

in a decreasing order. We filter the ranking as in [22] by removing
all quadruples where xt ′,s,p,o = 1 and t ̸= t ′, in order to elimi-
nate ambiguity during episodic information retrieval. Similarly, we
evaluated the retrieval of the predicate between a given subject
and object at a certain time instance by computing and ranking
the indicator θ

epi
t,s,p′,o. We also evaluated the retrieval of entities by

ranking and averaging the filtered indicators θt,s′,p,o and θt,s,p,o′ .
To measure the generalization ability of the models, we report
different measures of the ranking: mean reciprocal rank (MRR),
and Hits@n on the test dataset.

The datasets were split into train, validation, and test sets that
contain the most frequently appearing entities in the episodic
knowledge graphs. Training was performed by minimizing the
logistic loss (2), and was terminated using early stopping on the
validation dataset by monitoring the filtered MRR recall scores
every {50, 100} epochs depending on themodels, where themaxi-
mum training duration was 500 epochs. This ensures that the gen-
eralization ability of unique latent representations of entities does
not suffer from overfitting. Before training, all model parameters
are initialized using Xavier initialization [23]. We also apply an l2
norm penalty on all parameters for regularization purposes (see
Eq. (2)).

In Table 3 we summarize the runtime for one training epoch
on the GDELT dataset for different models at ranks r̃ = r̃t ∈

{40, 60, 150}. All experiments were performed on a single Tesla
K80 GPU. In the following experiments, for compositional models
we search rank in {100, 150}, while for tensor models we search
optimal rank in {40, 50, 60} since larger ranks could lead to over-
fitting rapidly. Loss function is minimized with Adammethod [24]
with the learning rate selected from {0.001, 1e − 4, 5e − 5}.

We first assess the filtered MRR, Hits@1, Hits@3, and Hits@10
scores of inferring missing entities and predicates on the GDELT
test dataset. Table 4 summarizes the results. Generalizations on the
test dataset indicate the inductive reasoning capability of the pro-
posedmodels. This generalization can be useful for the completion
of evolving KGs with missing records, such as clinical datasets. It
can be seen that tensor models are able to outperform composi-
tional models consistently on both entity and predicate prediction
tasks. ConT has the best inference results on the entity-related
tasks, while Tucker performs better on the predicate-related tasks.
The superior Hits@1 result of ConT on the entity prediction indi-
cates that there are easily to be fitted entities in the GDELT dataset
along the timestamps. In fact, the GDELT dataset is unbalanced,

Table 5
Filtered results for entities and predicates recollection/prediction evaluated on the
ICEWS dataset.

Entity Predicate

Method MRR @1 @3 @10 MRR @1 @3 @10

DistMult 0.222 9.72 22.48 52.32 0.520 33.73 62.25 91.13
HolE 0.229 9.85 23.49 54.21 0.517 31.55 65.47 93.59
ComplEx 0.229 8.94 23.53 57.72 0.506 30.99 61.46 93.44
Tree 0.205 10.48 19.84 42.81 0.554 36.62 67.25 94.70
Tucker 0.257 12.88 27.10 54.43 0.563 36.96 69.55 95.43
ConT 0.264 15.71 29.60 46.67 0.557 38.12 67.76 87.71

Table 6
Filtered recall scores for entities and timestamps recollection on
the ICEWS (rare) training dataset.

Timestamp Entity

Method Rank MRR @3 MRR @3

DistMult 200 0.257 27.0 0.211 21.9
HolE 200 0.216 20.8 0.179 16.3
ComplEx 200 0.354 40.3 0.301 33.2
Tree 40 0.421 55.3 0.314 35.7
Tucker 40 0.923 98.9 0.893 97.1

ConT 40 0.982 99.7 0.950 97.9

and episodic quadruples related to certain entities dominate in
the episodic Knowledge graph, such as quadruples containing the
entities USA, or UN. Experiment results on balanced and extremely
sparse episodic dataset will be reported in the following.

Next, Table 5 shows the MRR, Hits@1, Hits@3, and Hits@10
scores of inferring missing entities and predicates on the ICEWS
test dataset. Similarly, we can read that tensor models outper-
form compositional models on both missing entity and predicate
inference tasks. The superior Hits@1 result of ConT for the miss-
ing entity prediction indicates again that the ICEWS dataset is
unbalanced, and episodic quadruples related to certain entities
dominate.

The recollection of the exact occurrence time of a significant
past event (e.g. unusual, novel, attached with emotion) is also an
important capability of episodic cognitive memory function. In
order to manifest this perspective of proposed models, Table 6
shows the filtered MRR, and Hits@3 scores for the timestamps and
entities recollection on the episodic ICEWS (rare) training dataset,
where rank column registers the optimal and minimum rank r̃ =

r̃t having the outstanding recall scores. Fig. 4 further displays
the filtered MRR score as a function of rank. Unlike the original
ICEWS, which contains many consecutive events that last from the
first to the last timestamp leading to unreasonably high filtered
timestamp recall scores, this ICEWS (rare) dataset consists of rare
temporal events that happen less than three times throughout the
whole time and starting points of events.

The outstanding performance of ConT compared with other
compositional models indicates the importance of large dimen-
sionality of time latent representation for the episodic tensor re-
construction/episodic memory recollection. Recall that for ConT
the real dimension of the latent representation of time is actually r̃3
after flattening Gt . This flexible latent representation for time could
compress almost all the semantic triples that occur at a certain
instance.7

7 This observation has its biological counterpart. In fact, the entorhinal cortex,
which plays an important role in the formation of episodic memory, is the main
part of the adult hippocampus that shows neurogenesis [25]. In an adult human,
approximately 700 new neurons are added per day through hippocampal neuroge-
nesis, which are believed to perform sensory and spatial information encoding, as
well as temporal separation of events [26,27].
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Fig. 4. Filtered MRR scores vs. rank for the entities (left) and timestamps (right) recollection on the ICEWS (rare) training dataset.

4. Semantic memory from episodic memory with marginaliza-
tion

We already discussed that a semantic KG might be related to a
human semanticmemory and that an episodic KGmight be related
to a human episodic memory. It has been speculated that episodic
and semantic memory must be closely related, and that semantic
memory is generated from episodic memory by some training
process [28,29]. As a very simple implementation of that idea, we
propose that a semanticmemory could be generated from episodic
memory by marginalizing time. Thus, both types of memories
would rely on identical representations and the marginalization
step can be easily performed: Since probabilistic tensormodels be-
long to the classes of sum–product nets, a marginalization simply
means an integration over all time representations.

Thus, in the second set of experiments, we test the hypothesis
that semantic memory can be derived from episodic memory by
projection. In otherwords, a semantic knowledge graph containing
current semantic facts can be approximately constructed after
modeling a corresponding episodic knowledge graph viamarginal-
ization. A marginalization can be performed by activating all time
index neurons, i.e., summing over all aet , since, e.g., Tucker decom-
positions are an instance of a so-called sum–product network [30].
However, events having start as well as end timestamps cannot
simply be integrated into our current semantic knowledge describ-
ing what we know now. For example, (Ban Ki-moon, SecretaryOf,
UN) is not consistent with what we know currently. To resolve this
problem, we introduce two types of time indices, etstart and etend ,
having the latent representations a(etstart ) and a(etend ), respectively.
Those time indices can be used to construct the episodic tensor
Estart aggregating the start timestamps of consecutive events, as
well as the episodic tensor Eend aggregating the end timestamps.8

For the projection, instead of only summing over a(etstart ), we
also subtract the sum over a(etend ). In this way, we can achieve the
effect that events that have terminated already (i.e., have an end
time index smaller than the current time index) are not integrated
into the current semantic facts. Now, to test our hypothesis that
this extended projection allows us to derive semantic memory
from episodic memory, we trained HolE, DistMult, ComplEx, ConT,
and Tucker on the episodic tensors Estart and Eend as well as on
the semantic tensor χ derived from ICEWS. Note that only these
models allow projection, since their indicator functions can be

8 E.g., if the duration of a triple event (es, ep, eo) lasts from tstart to tend , the
quadruple (es, ep, eo, etstart ) is stored in Estart , while (es, ep, eo, etend ) is stored Eend
only if tend < T (where T is the last timestamp). In other words, events that last
until the last timestamp do not possess eend .

written in the form θ
epi
t,s,p,o = aet · f̃ , where f̃ can be arbitrary

function of aes , aep , and aeo depending on the model choice.9 The
model parameters are optimized using the margin-based ranking
loss (3).10

Training was first performed on the episodic tensor Estart , and
then on Eend with fixed aes , aep , and aeo obtained from the training
on Estart , since we assume that latent representations for subject,
object, and predicate of a consecutive event do not change during
the event. Note that after training in this way, we could recall the
starting and terminal point of a consecutive event (see the episodic
tensor reconstruction experiments in Section 3), or infer a current
semantic fact solely from the latent representations instead of rule-
based reasoning.

To evaluate the projection, we compute the recall and area
under precision–recall-curve (AUPRC) scores for the projection
at different ranks on the ICEWS training dataset, and compare
them with the scores obtained from training the semantic tensor
separately. The semantic dataset contains positive triples, which
are episodic events that continue until the last (current) times-
tamp, e.g. (António Guterres, SecretaryOf, UN, True), along with
negative triples extracted fromalready terminated episodic events,
e.g. (Ban Ki-moon, SecretaryOf, UN, False). During the test phase of
projection, a triple from the semantic dataset is given with non-
specified time index, e.g. (es, ep, eo, True/False, t). Then, for the first
method considering only the starting point of an episodic event,
the projection to semantic space is computed as

θproj
s,p,o = [

T∑
tstart=1

a(etstart )] · f̃ , (9)

while for the second method considering both starting and termi-
nal points, the projection is computed as

θproj
s,p,o =

⎡⎣ T∑
tstart=1

a(etstart ) −

T∑
tend=1

a(etend )

⎤⎦ · f̃ . (10)

Then, the scores are evaluated by taking the label of the given
semantic triple as the target, and taking θ

proj
s,p,o as the prediction. The

9 For ConT, θ epi
t,s,p,o = flatten(gt ) · (aes ⊗ aep ⊗ aeo ), where ⊗ denotes the outer

product. For ComplEx, θ epi
t,s,p,o = Re(aet ) ·Re(aes ⊙aep ⊙ āeo )− Im(aet ) · Im(aes ⊙aep ⊙

āeo ), where ⊙ denotes the Hadamard product. The Tree model cannot be written in
this form since et resides in both subtrees T1 and T2 .
10 For the projection experiment, we omit the sigmoid function in Eq. (3), train
and interpret the multilinear indicator θ

epi
t,s,p,o = aet · f̃ (aes , aep , aeo ) directly as

the probability of episodic quadruple. Only in this way of training, a projection is
mathematically legitimate.
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Fig. 5. Recall scores vs. rank for the episodic-to-semantic projection on the ICEWS dataset with two different projection methods.

goal of this test is to check how well the algorithms can project a
given consecutive event (es, ep, eo, tstart · · · tend) to semantic knowl-
edge space using only the marginalized latent representation of
time. All other experimental settings are similar to those in Sec-
tion 3, and the experiments were repeated four times on different
sampled training datasets.

Fig. 5 shows the recall scores for the two different projection
methods on the training dataset in comparison to the separately
trained semantic dataset. Due to limited space, we only show four
models: ConT, Tucker, ComplEx, and HolE. As we can see, only
the marginalization considering both starting and terminal time
indices allows a reasonable projection from episodic memory to
the current semantic memory. Again, ConT11 exhibits the best
performance, with its recall score saturating after r̃ ≈ 15. In
contrast, HolE shows insufficient projection quality with sizable
errors, especially at small ranks, which is due to its higher-order
encoding noise. To show that the two types of latent represen-
tations of time do not simply eliminate each other for a correct
episodic projection, Fig. 6 shows the AUPRC scores evaluated on
the training dataset. Overall, this experiment supports the idea
that semanticmemory is a long-term storage for episodicmemory,
where the exact timing information is lost.

For a fair comparison, in the last experimentwe report the recall
scores of the semantic models obtained by projecting the episodic
models with respect to the temporal dimension. We compare two
projection methods, the Start projection which only considers the
starting point of episodic events (see Eq. (9)), and the Start–End

11 Note that since ConT does not have a direct semantic counterpart, we instead
use the semantic results obtained using RESCAL. This is reasonable since ConT can
be viewed as a high-dimensional (i.e., episodic) generalization of RESCAL.

projection which takes both the starting and terminal points of
episodic events into consideration. In addition, we report the recall
scores on two semantic datasets. The first one contains genuine
semantic facts, while the second dataset contains false semantic
triples which should already be ruled out through the projection.

Two different projections are performed on two semantic
datasets, the genuine one and the false one. Theoretically, the recall
scores on the genuine semantic dataset should behigher than those
on the false dataset. Thus, the model hyper-parameters are chosen
bymonitoring the difference between the recall scores Hits@10 on
the genuine and false semantic datasets.

Table 7 reports the filtered and raw Hits@10 metrics for differ-
ent models, projection methods, and datasets. Moreover, we also
compare the projection with the recall scores obtained by directly
modeling the genuine semantic dataset using the corresponding
semantic models.12 The ConT model has the best projection per-
formance, since its projected recall scores on the genuine dataset
aremuch higher than those obtained on the false semantic dataset.
Moreover, the Start–End projection method based on the ConT
model is the only combinationwhich achieves similar results com-
pared to the corresponding semantic model. One can also notice
that all the projected compositional models are only able to tell
whether a semantic triple is already ruled out or not before the last
timestamp, however they cannot provide good inference results on
the genuine semantic dataset.

12 Note that we use the RESCAL model as the corresponding semantic model for
the ConT.
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Fig. 6. AUPRC scores vs. rank for the episodic-to-semantic projection on the ICEWS dataset with two different projection methods.

Table 7
Filtered and raw Hits@10 scores for the episodic-to-semantic projection. Two projection methods, Start (Eq. (9)), Start–
End (Eq. (10)), are compared. Furthermore, semantic ICEWS dataset with genuine semantic triples, and semantic ICEWS
dataset with false triples are used for the projection experiments. Various projection scores are comparedwith the scores
which are obtained by directly modeling the semantic ICEWS dataset with genuine semantic triples.

Start Start–End Start (false) Start–End (false) Semantic

Method Filter Raw Filter Raw Filter Raw Filter Raw Filter Raw

DistMult 3.8 3.6 5.6 5.0 4.0 3.8 3.8 3.6 59.3 32.4
HolE 5.8 5.4 5.5 5.1 4.7 4.5 5.6 5.2 56.1 31.3
ComplEx 4.1 3.7 4.9 4.4 3.9 3.7 3.8 3.6 60.1 29.4
Tucker 14.8 13.1 15.1 13.4 11.3 10.3 11.8 10.9 46.5 23.7

ConT 30.9 24.6 40.8 30.3 23.0 19.9 22.6 19.3 43.8 20.4

5. Conclusion

This paper described the first mathematical models for the
declarative memories: the semantic and episodic memory func-
tions. To model these cognitive functions, we generalized leading
approaches for static knowledge graphs (i.e., Tucker, RESCAL, HolE,
ComplEx, DistMult) to 4-dimensional temporal/episodic knowl-
edge graphs. In addition, we developed two novel generalizations
of RESCAL to episodic tensors, i.e., Tree and ConT. In particular,
ConT has superior performance overall, which indicates the impor-
tance of introducedhigh-dimensional latent representation of time
for both sparse episodic tensor reconstruction and generalization.

Our hypothesis is that perception includes an active semantic
decoding process, which relies on latent representations of entities
and predicates, and that episodic and semantic memories depend
on the same decoding process. We argue that temporal knowledge
graph embeddings might be models for human cognitive episodic
memory and that semantic memory (facts we know) can be gen-
erated from episodic memory by a marginalization operation. We

also test this hypothesis on the ICEWS dataset, the experiments
show that the current semantic facts can only be derived from the
episodic tensor by a proper projection considering both starting
and terminal points of consecutive events.
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